survey.py 2.44 KB
#!/usr/bin/env python

import argparse,numpy,os,sys,csv,re

from matplotlib import rc

rc('font',**{'family':'serif','serif':['Times'], 'size': 9})
rc('text', usetex=True)

import matplotlib.pyplot as plt

parser = argparse.ArgumentParser()
args = parser.parse_args()

class Score(object):
  def __init__(self, usage_score, efficiency_score):
    self.usage_score, self.efficiency_score = usage_score, efficiency_score

scores = []

for line in csv.DictReader(open('survey.csv', 'rb'), dialect='excel'):
  usage_keys = [key for key in line.keys() if re.search(r"""U\d""", key) != None]
  efficiency_keys = [key for key in line.keys() if re.search(r"""E\d""", key) != None]
  
  usage_score = 1. * len([1 for key in usage_keys if line[key] == 'Yes.']) + \
                     0.5 * len([1 for key in usage_keys if line[key] == 'Maybe.'])
  
  efficiency_score = 1. * len([1 for key in efficiency_keys if line[key] == 'Yes.']) + \
                     0.5 * len([1 for key in efficiency_keys if line[key] == 'Maybe.'])

  scores.append(Score(usage_score, efficiency_score))

scores.sort(key=lambda s: s.efficiency_score - s.usage_score)

efficiency_wins = len([1 for s in scores if s.efficiency_score > s.usage_score])
usage_wins = len([1 for s in scores if s.usage_score > s.efficiency_score])

fig = plt.figure()
ax = fig.add_subplot(111)
ax.bar(numpy.arange(len(scores)) - 0.3,
       [s.usage_score for s in scores],
       width=0.3, color='b', linewidth=0.,
       label='{\\small \\textbf{Usage-Based Measure}: %d Wins}' % (usage_wins,))
ax.bar(numpy.arange(len(scores)),
       [s.efficiency_score for s in scores],
       width=0.3, color='r', linewidth=0.,
       label='{\small \\textbf{Efficiency-Based Measure}: %d Wins}' % (efficiency_wins,))
ax.legend(loc='upper center', fontsize=9)

ax.set_yticks(ax.get_yticks()[1:])
ax.xaxis.set_ticks(numpy.arange(len(scores)))
ax.xaxis.set_tick_params(which='both', direction='out')
ax.tick_params(axis='both', which='both', top='off', right='off', labelbottom='off')
ax.axis(xmin=-0.7,xmax=len(scores) + 0.7,
        ymin=0,ymax=max([max(s.efficiency_score,s.usage_score) for s in scores]) + 0.5)

for tick_location in ax.yaxis.get_majorticklocs():
  ax.axhline(tick_location, color='black', ls=':', linewidth=0.1, zorder=-1)

ax.set_xlabel('\\textbf{%d Responses}' % (len(scores)), labelpad=6)
ax.set_ylabel('\\textbf{Score}')
fig.subplots_adjust(right=0.99,top=0.98,left=0.07,bottom=0.10)

fig.set_size_inches(6.5,2.5)

fig.savefig('survey.pdf')