Commit e831f171651f96913ff2dc05ada60759ac7bde7d

Authored by Rizwana Begum
1 parent bf41694a

moving figures around

Showing 1 changed file with 83 additions and 85 deletions
performance_clusters.tex
... ... @@ -27,16 +27,6 @@ We search for the performance clusters using an algorithm that is similar to the
27 27 first filter the settings that fall within a given inefficiency budget and
28 28 then search for the optimal settings in the first pass. In the second pass, we find all of the
29 29 settings that have a speedup within the specified cluster threshold of the optimal performance.
30   -\begin{figure}[t]
31   - \centering
32   - \includegraphics[width=\columnwidth]{./figures/plots/496/stable_line_plots/lbm_stable_lineplot_annotated_5.pdf}
33   -\vspace{-0.5em}
34   -\caption{\textbf{Stable Regions and Transitions for \textit{lbm} with
35   -Threshold of 5\% and Inefficiency Budget of 1.3:} Solid lines represent the
36   -stable regions and vertical dashed lines mark the transitions made by
37   -\textit{lbm}.}
38   -\label{lbm-stable-line-5-annotated}
39   -\end{figure}
40 30  
41 31 Figures~\ref{clusters-gobmk},~\ref{clusters-milc} plot the performance
42 32 clusters during the execution of the benchmarks \textit{gobmk} and \textit{milc}. We
... ... @@ -49,48 +39,6 @@ Cluster thresholds of 1\% and
49 39 A cluster threshold of less than 1\% may limit the ability to tune less often.
50 40 While cluster thresholds greater than 5\% are probably not realistic as user is already
51 41 compromising performance by setting low inefficiency budgets to save energy.
52   -\begin{figure*}[t]
53   - \begin{subfigure}[t]{\textwidth}
54   - \centering
55   - \vspace{-1em}
56   - \includegraphics[width=\columnwidth]{{./figures/plots/496/stable_line_plots/stable_lineplot}.pdf}
57   - \end{subfigure}%
58   -\vspace{0.5em}
59   -\caption{\textbf{Stable Regions of \textit{gcc} and \textit{lbm} for
60   -Inefficiency Budget of 1.3:} Increase in cluster threshold increases the length
61   -of the stable regions, which eventually leads to less transitions. Higher
62   -inefficiency budgets allow system to run unconstrained throughout.}
63   -\label{stable-regions}
64   -\end{figure*}
65   -\begin{figure*}[t]
66   - \begin{subfigure}[t]{\textwidth}
67   - \centering
68   - \includegraphics[width=\columnwidth]{{./figures/plots/496/stability_metrics/transition_percent_across_thresholds}.pdf}
69   - \end{subfigure}
70   -\vspace{-0.5em}
71   -\caption{\textbf{Number of Transitions with Varying Inefficiency Budgets and
72   -Cluster Thresholds:} The number of frequency transitions decrease with increase in cluster
73   -threshold. The amount of change varies with benchmark and inefficiency budget.}
74   -%Decrease in number of transitions is dependent on benchmark and
75   -%inefficiency budget.}
76   -\label{transitions-bar}
77   -\end{figure*}
78   -
79   -\begin{figure*}[t]
80   - \begin{subfigure}[t]{\textwidth}
81   - \centering
82   - \includegraphics[width=\columnwidth]{{./figures/plots/496/stable_length_box/stable_length_box}.pdf}
83   - \end{subfigure}%
84   -\vspace{0.5em}
85   -\caption{\textbf{Distribution of Length of Stable Regions:} The average length of
86   -stable regions increases with cluster threshold.
87   -%While inefficiency budget has significant impact on length of stable regions
88   -%for \textit{lbm}, it doesn't change the length of stable regions of
89   -%\textit{gobmk} much.
90   -}
91   -\label{box-lengths}
92   -\end{figure*}
93   -
94 42  
95 43 Figures~\ref{clusters-gobmk}(c),~\ref{clusters-gobmk}(d) plot the
96 44 performance clusters for \textit{gobmk} for inefficiency budget of 1.3 and
... ... @@ -142,6 +90,29 @@ performance within set cluster threshold (for example samples 3-5 in
142 90 Figures~\ref{clusters-gobmk}(a),~\ref{clusters-gobmk}(c)).
143 91 Figure~\ref{clusters-milc} shows that \textit{milc} has similar trends as
144 92 \textit{gobmk}.
  93 +\begin{figure}[t]
  94 + \centering
  95 + \includegraphics[width=\columnwidth]{./figures/plots/496/stable_line_plots/lbm_stable_lineplot_annotated_5.pdf}
  96 +\vspace{-0.5em}
  97 +\caption{\textbf{Stable Regions and Transitions for \textit{lbm} with
  98 +Threshold of 5\% and Inefficiency Budget of 1.3:} Solid lines represent the
  99 +stable regions and vertical dashed lines mark the transitions made by
  100 +\textit{lbm}.}
  101 +\label{lbm-stable-line-5-annotated}
  102 +\end{figure}
  103 +\begin{figure*}[t]
  104 + \begin{subfigure}[t]{\textwidth}
  105 + \centering
  106 + \vspace{-1em}
  107 + \includegraphics[width=\columnwidth]{{./figures/plots/496/stable_line_plots/stable_lineplot}.pdf}
  108 + \end{subfigure}%
  109 +\vspace{0.5em}
  110 +\caption{\textbf{Stable Regions of \textit{gcc} and \textit{lbm} for
  111 +Inefficiency Budget of 1.3:} Increase in cluster threshold increases the length
  112 +of the stable regions, which eventually leads to less transitions. Higher
  113 +inefficiency budgets allow system to run unconstrained throughout.}
  114 +\label{stable-regions}
  115 +\end{figure*}
145 116  
146 117 An interesting observation from the performance clusters is that algorithms
147 118 like CoScale~\cite{deng2012coscale} that search for the best performing settings every interval starting
... ... @@ -150,6 +121,33 @@ overhead of optimal settings search by starting search from the settings selecte
150 121 for the previous interval as application phases are often stable for multiple sample intervals.
151 122 %as the application phases don't change drastically in
152 123 %short intervals.
  124 +\begin{figure*}[t]
  125 + \begin{subfigure}[t]{\textwidth}
  126 + \centering
  127 + \includegraphics[width=\columnwidth]{{./figures/plots/496/stability_metrics/transition_percent_across_thresholds}.pdf}
  128 + \end{subfigure}
  129 +\vspace{-0.5em}
  130 +\caption{\textbf{Number of Transitions with Varying Inefficiency Budgets and
  131 +Cluster Thresholds:} The number of frequency transitions decrease with increase in cluster
  132 +threshold. The amount of change varies with benchmark and inefficiency budget.}
  133 +%Decrease in number of transitions is dependent on benchmark and
  134 +%inefficiency budget.}
  135 +\label{transitions-bar}
  136 +\end{figure*}
  137 +\begin{figure*}[t]
  138 + \begin{subfigure}[t]{\textwidth}
  139 + \centering
  140 + \includegraphics[width=\columnwidth]{{./figures/plots/496/stable_length_box/stable_length_box}.pdf}
  141 + \end{subfigure}%
  142 +\vspace{0.5em}
  143 +\caption{\textbf{Distribution of Length of Stable Regions:} The average length of
  144 +stable regions increases with cluster threshold.
  145 +%While inefficiency budget has significant impact on length of stable regions
  146 +%for \textit{lbm}, it doesn't change the length of stable regions of
  147 +%\textit{gobmk} much.
  148 +}
  149 +\label{box-lengths}
  150 +\end{figure*}
153 151  
154 152 \subsection{Stable Regions}
155 153 So far, we have made observations by
... ... @@ -185,39 +183,6 @@ currently designing algorithms in hardware and software that are capable of tuni
185 183 running the application as future work. In Section~\ref{sec-algo-implications}, we
186 184 propose ways in which length of stable regions and the available settings for a
187 185 given region can be predicted for energy management algorithms in real systems.
188   -\begin{figure}[t]
189   -% \begin{subfigure}[t]{0.45\textwidth}
190   -% \centering
191   -% \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/energy_bar_normalized_0.0_0_0}.pdf}
192   -% \vspace{-2.5em}
193   -% \end{subfigure}%
194   -% \begin{subfigure}[t]{0.45\textwidth}
195   - \centering
196   - \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/performance_bar_normalized_0.0_0_0}.pdf}
197   -% \vspace{-2.5em}
198   -% \end{subfigure}%
199   -\caption{\textbf{Variation of Performance with Inefficiency:} Performance
200   -improves with increase in inefficiency budget, but the amount of improvement varies across benchmarks.
201   -%\XXXnote{Is this description sufficient?}
202   -%System always stays under the given inefficiency budget.
203   -%Maximum inefficiency consumed by the system is bounded by the application and
204   -%devices.
205   -}
206   -\label{ineff-perf}
207   -\end{figure}
208   -
209   -\begin{figure*}[t]
210   - \begin{subfigure}[t]{\textwidth}
211   - \centering
212   - \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/energy_perf_bar_1.3}.pdf}
213   - \end{subfigure}
214   -\vspace{-0.5em}
215   -\caption{\textbf{Energy-performance Trade-offs for Inefficiency Budget of 1.3,
216   -Multiple Cluster Thresholds:} Performance degradation is always within the
217   -cluster threshold. Allowing small degradation in performance reduces energy
218   -consumption, which decreases further when tuning overhead is included.}
219   -\label{energy-perf-trade-off}
220   -\end{figure*}
221 186  
222 187 Figure~\ref{stable-regions} plots stable regions for benchmarks \textit{gcc} and
223 188 \textit{lbm} for multiple inefficiency budgets and cluster thresholds. With
... ... @@ -258,6 +223,39 @@ Therefore the number of transition per billion instructions decrease only slight
258 223 with increase in cluster threshold and inefficiency budget for \textit{gobmk}.
259 224 Figure~\ref{box-lengths}(c) summarizes the distribution of stable region lengths observed
260 225 across benchmarks for multiple cluster thresholds at inefficiency budget of 1.3.
  226 +\begin{figure}[t]
  227 +% \begin{subfigure}[t]{0.45\textwidth}
  228 +% \centering
  229 +% \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/energy_bar_normalized_0.0_0_0}.pdf}
  230 +% \vspace{-2.5em}
  231 +% \end{subfigure}%
  232 +% \begin{subfigure}[t]{0.45\textwidth}
  233 + \centering
  234 + \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/performance_bar_normalized_0.0_0_0}.pdf}
  235 +% \vspace{-2.5em}
  236 +% \end{subfigure}%
  237 +\caption{\textbf{Variation of Performance with Inefficiency:} Performance
  238 +improves with increase in inefficiency budget, but the amount of improvement varies across benchmarks.
  239 +%\XXXnote{Is this description sufficient?}
  240 +%System always stays under the given inefficiency budget.
  241 +%Maximum inefficiency consumed by the system is bounded by the application and
  242 +%devices.
  243 +}
  244 +\label{ineff-perf}
  245 +\end{figure}
  246 +
  247 +\begin{figure*}[t]
  248 + \begin{subfigure}[t]{\textwidth}
  249 + \centering
  250 + \includegraphics[width=\columnwidth]{{./figures/plots/496/energy_perf_bar/energy_perf_bar_1.3}.pdf}
  251 + \end{subfigure}
  252 +\vspace{-0.5em}
  253 +\caption{\textbf{Energy-performance Trade-offs for Inefficiency Budget of 1.3,
  254 +Multiple Cluster Thresholds:} Performance degradation is always within the
  255 +cluster threshold. Allowing small degradation in performance reduces energy
  256 +consumption, which decreases further when tuning overhead is included.}
  257 +\label{energy-perf-trade-off}
  258 +\end{figure*}
261 259  
262 260 \subsection{Energy-Performance Trade-offs}
263 261 In this subsection we analyze the energy-performance trade-offs made by our
... ...