main.tex 7.58 KB
\documentclass[a0paper]{tikzposter}

\usepackage{url}
\usepackage[hidelinks]{hyperref}
\usepackage{booktabs}
\usepackage{subcaption}
\usepackage[usenames,dvipsnames]{color}
\usepackage{fontspec}
\usepackage{pgf}  
\usepackage[absolute, verbose, overlay]{textpos}
\usepackage{caption}
\usepackage{array}
\usepackage{fancybox}
\usepackage{graphicx}
\usepackage{biblatex}
\usepackage{enumerate}
\usepackage{ulem}
\usepackage[absolute,overlay]{textpos}

\graphicspath{{figs/}}
\bibliography{main}
\captionsetup{labelformat=empty}
\setlength{\TPHorizModule}{1cm}
\setlength{\TPVertModule}{1cm}

\usetheme{Default}
%\usetheme{Rays}
%\usetheme{Basic}
%\usetheme{Simple}
%\usetheme{Envelope}
%\usetheme{Wave}
%\usetheme{Board}
%\usetheme{Autumn}
%\usetheme{Desert}

%\usecolorpalette{BrownBlueOrange}
%\usecolorstyle{Germany}
%\usecolorstyle{Denmark}
%\usecolorstyle{Russia}
%\usecolorstyle{Default}
%\usecolorstyle{Australia}
%\usecolorstyle{Britain}
%\usecolorstyle{Sweden}
%\usecolorstyle{Spain}



\newcommand{\PS}{\textsc{PocketSniffer}}

\title{\parbox{\linewidth}{\centering Crowdsourcing Access Network Spectrum Allocation Using Smartphones}}


\author{%
  Jinghao Shi$^\dag$, Zhangyu Guan$^\dag$$^\S$, Chunming Qiao$^\dag$, Tommaso
  Melodia$^\S$\\Dimitrios Koutsonikolas$^\dag$ and Geoffrey Challen$^\dag$\\
  \vspace*{5mm}
  \url{pocketsniffer@blue.cse.buffalo.edu}
}

\institute{%
  $^\dag$University at Buffalo\quad$^\S$Northeastern University
}

%\titlegraphic{\includegraphics[width=0.6\textwidth]{ub_logo}}

\begin{document}

\maketitle 

\begin{columns}
  \column{0.5}

  \block{1. So Many APs, So Few Channels}{%
    \begin{tikzfigure}[Crowded RF space.]
      \begin{subfigure}{0.45\colwidth}
        \includegraphics[width=\textwidth]{channel}
      \end{subfigure}\hspace{0.01\colwidth}%
      \begin{subfigure}{0.45\colwidth}
        \includegraphics[width=\textwidth]{crowd}
      \end{subfigure}
    \end{tikzfigure}
    \vspace{5mm}
    More and more wireless devices are competing for the limited spectrum
    resources. Recent studies have shown the value of client-side measurements
    in determining better channel assignment. Yet \textbf{how to collect data
    from clients without interrupting their normal usage} remains to be an
    open question. To address this problem, we propose \PS{}---\textbf{a
    framework for client-side measurements collection}. The key idea is to
    \textbf{use inactive smartphones to perform measurements on behalf of
    nearby devices} to improve spectrum allocation. \PS{} also collects the
    network measurements naturally generated by smartphones to monitor the
    health and performance of large-scale wireless networks.
  }

  \block{2. Why Smartphones?}{%
    \begin{tikzfigure}[Smartphones are carried with you, always on but mostly
      idle.]
      \begin{subfigure}[t]{0.3\colwidth}
        \centering
        \includegraphics[width=\textwidth]{carried}
      \end{subfigure}\hspace{0.01\colwidth}%
      \begin{subfigure}[t]{0.28\colwidth}
        \centering
        \includegraphics[width=\textwidth]{always_on}
        \caption{\large\textbf{Always on.}}
      \end{subfigure}\hspace{0.01\colwidth}%
      \begin{subfigure}[t]{0.27\colwidth}
        \centering
        \includegraphics[width=\textwidth]{mostly_idle}
        \caption{\large\textbf{Mostly idle.}}
      \end{subfigure}
    \end{tikzfigure}
    Smartphones are carried with people, which enables them to measure the
    network conditions from \textbf{actual user's point of view}. Smartphones are
    \textit{always on} yet \textit{mostly idle}, making it possible to \textbf{conduct
    measurements without interrupting users' normal usage}.
  }

  \block{3. System Design}{%
    \begin{tikzfigure}[\PS{} System]
      \includegraphics[width=0.6\colwidth]{system}
    \end{tikzfigure}
  }

  \block{4. Challenges and Approaches}{%
    \begin{itemize}
      \item Proximity detection---use measurements from one device to
        approximate the another.
        \begin{itemize}
          \item Explore proximity in both physical and Wifi signature space.
        \end{itemize}
      \item Measurement validation---defeat false measurements.
        \begin{itemize}
          \item Leverage trusted APs.
        \end{itemize}
      \item Incentives---encourage measurements.
        \begin{itemize}
          \item Bob's phone help Bob's laptop.
          \item Measurements for QoS.
        \end{itemize}
    \end{itemize}
  }

  \column{0.5}

  \block{5. Coordination Scenarios}{%
    \begin{tikzfigure}
      \centering
      \begin{subfigure}{0.3\colwidth}
        \centering
        \includegraphics[width=\textwidth]{single_sp_managed}
        \captionof{figure}{Single SP, managed clients\\(e.g., home Wifi network).}
      \end{subfigure}\hspace*{0.1\colwidth}%
      \begin{subfigure}{0.3\colwidth}
        \centering
        \includegraphics[width=\textwidth]{single_sp_unmanaged}
        \captionof{figure}{Single SP, unmanaged clients\\(e.g., campus Wifi
        network).}
      \end{subfigure}
    \end{tikzfigure}
    \begin{tikzfigure}
      \begin{subfigure}{0.4\colwidth}
        \centering
        \includegraphics[width=\textwidth]{multiple_sp_managed}
        \captionof{figure}{Multiple SP, managed clients\\(e.g., overlapping home
        network).}
      \end{subfigure}\hspace*{0.01\colwidth}%
      \begin{subfigure}{0.4\colwidth}
        \centering
        \includegraphics[width=\textwidth]{multiple_sp_unmanaged}
        \captionof{figure}{Multiple SP, unmanaged clients\\(e.g., overlapping
        enterprise network).}
      \end{subfigure}
    \end{tikzfigure}
  }
  \block{6. Discarded Treasure}{%
    \begin{tikzfigure}
      \centering
      \begin{minipage}[T]{0.4\colwidth}
        \vspace{-3cm}
        To cope with rapid user mobility, smartphones already perform aggressive
        network exploration. For example, the right figure shows that Android
        will scan every 15~s or 60~s depending on the device's Wifi connection.
        This is a treasure that is being discarded. \PS{} passively collects
        such measurements in an energy neutral manner, to help monitor large
        scale wireless networks.
      \end{minipage}\hspace{0.03\colwidth}%
      \begin{minipage}[T]{0.5\colwidth}
        \includegraphics[width=\textwidth]{scan_interval}
        \label{fig:scan}
      \end{minipage}
    \end{tikzfigure}
  }
  \block{7. Prototype}{%
    \begin{tikzfigure}
      \centering
      \begin{subfigure}{0.42\colwidth}
        \centering
        \includegraphics[width=\textwidth]{channel_switch}
      \end{subfigure}\hspace{0.03\colwidth}%
      \begin{subfigure}{0.42\colwidth}
        \centering
        \includegraphics[width=\textwidth]{switch.pdf}
      \end{subfigure}
    \end{tikzfigure}
    We hacked the driver of Nexus 5 smartphones to support Wifi monitor
    mode. We also set up several TP-LINK WDR3500 wireless routers running
    OpenWRT as \PS{} APs. We conducted a simple channel adaptation experiment as
    follows:
    \begin{enumerate}
      \item \textbf{0--7~s}\quad TCP link between \PS{} AP and device $A$.
      \item \textbf{7--75~s}\quad $B$ jams the channel, causing bandwidth
        degradation and jitter of $A$.
      \item \textbf{75--100~s}\quad AP switches to a less congested channel with
        the help of nearby device $C$.
    \end{enumerate}
    Throughout the experiment, \textbf{device $A$'s active session is not
      affected---neither $A$'s association with AP or TCP link is interrupted by
    the channel switch}.

    This experiment demonstrate the feasibility of \PS{} in single SP, managed
    clients scenario. We're extending the system to other three scenarios.
  }

\end{columns}

\end{document}